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The efficieny of adaptive algorithms with nonstationary input environ
ments is analyzed where signals, jammers, and background noises can be of
a transient and nonstationary nature. Such environments have been modeled
r?;rIE;EE‘3T“ﬁ65TEE“BZ?EFET;I§;T"EEEE:§quare-error performance functions,
The bottom of the performance bowl can be assumed to move slowly, with a
randomly correlated Markov character. Exponential time weighting, inher-
ent in the LMS algorithm, can give optimal performance with the proper
choice of the parameter u when the motion of the bottom of the bowl is
first order Markov, With higher-order Markov activity, exponential time

weighting is no longer optimal. Higher-order adaptive algorithms are
devised for nonstationary input applicationms.

is described which uses both poles and zeros in the adaptive signal
filtering paths from the antenna elements to the final array-output.iWhen
directly adapting feedback coefficients, difficulties arise as the mggnr
square-error is not a quadratic function of the weights but is, in fact,
multimodal. There are questions of process instability, convergence to
local rather than global optima, and generally slow convergence that occur%
with all of the known algorithms that have been proposed for adapting feed}
back filters. However, it is possible to simultaneously adapt feedforward
and feedback filter coefficients by adapting feedforward filters only. The
advantage of this approach comes from the quadratic nature of the mean-
square-error function. This method does not have problems of instability
and convergence to local optima, and it converges essentially as fast as
the conventional zeros-only system. It has the disadvantage of not mini-
mizing the true mean-square-error, but does minimize the mean square of a
filtered version of the true errnr. The effects of not minimizing true
mean-square-error are being analyzed. Some gimulation experiments have
been conducted to compare the new approach with conventional beamformers
using an equal number of variable weights. Preliminary results show deepeﬁ
and sharper nulling with the new approach than with the conventional
approach.
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Abstract

This annual interim report is organized in three parts:

Part 1

The fundamental efficiency of adaptive algorithms is analyzed. It is found
that noise in the adaptive weights increases with convergence speed. This
causes loss in mean-square-error performance. Efliciency is considered from
the point of view of misadjustment versus speed of convergence. A new version
of the LMS algorithm based on Newton's method is analyzed and shown to make
as efficient use of real-time input data as can be. The performance of this algo-
rithm is not affected by eigenvalue disparity. Practical algorithms can be dev-
ised that closely approximate Newton's method. In certain cases, the steepest

descent version of LMS performs as well as Newton's method.

Part Il

This part analyzes the efliciency of adaptive algorithms with nonstationary
input environments, i.e signals, jammers, and background noises can be of a
transient and nonstationary nature. Such environments have been modeled in
terms of moving paraboloidal mean-square-error performance functions. The
bottom of the performance bowl can be assumed to move slowly, with a ran-
domly correlated Markov character. Exponential time weighting, inherent in the
LMS algorithm, can give optimal performance with the proper choice of the
parameter x when the motion of the bottom of the bowl is first order Markov.
With higher-order Markov activity, exponential time weighting is no longer
optimal. Higher order adaptive algorithms are being devised for nonstationary

input applications.
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Part
This part introduces a new adaptive filtering method for broadband adap-
tive beamforming. It uses both poles and zeros in the adaptive signal filtering

paths from the antenna elements to the final array output.

When directly adapting feedback coeflicients, difficulties arise as the mean
square error is not a quadratic function of the weights but is, in fact, multimo-
dal. There are questions of process instability, hang up on local rather than glo-
bal optima, and generally slow convergence that occurs with all of the known
algorithms that have been proposed for adapting feedback filters.

Our methodology effectively permits simultaneous adaptation of feedfor-

ward and feedback filter coefficients by adapting feedforward filters only. The

advantage of this approach comes from the quadratic nature of the mean square

error function. Our method does not have problems of instability and conver- ‘

gence to local optima, and it converges essentially as fast as the conventional
zeros-only system. It has the disadvantage of not minimizing the true mean-
square-error, but does minimize the mean square of a filtered version ol the
true error. The effects of not minimizing true mean square error are being
analyzed.

Preliminary experimental results comparing systems with equal numbers of
variable weights, show deeper and sharper jammer nulling than would be possi-

ble with the conventional approach.
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1.1 INTRODUCTION

The first part of this report deals with the efficiency of adaptive algorithms,
and suggests a way to improve on the current techniques. We include a general
discussion of the issues involved in evaluating and comparing various adaptive
algorithms. Also, an optimal form of adaptive algorithm is introduced, called
the LMS/Newton ailgorithm. This is a stochastic gradient descent algorithm
based on Newton's Method, with a statistical performance which is as efficient in
its data usage as possible. Eigenvalue spread does not aﬂeqt the rate of conver-
gence of LMS/Newton. The standard LMS algorithm and LMS/Newton algorithm
are compared, and conditions are established when the two algorithms have the

same average performance.
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1.2 ALGORITHM EFFICIENCY

Two forms of the LMS adaptive algorithm will be discussed here, the "usual”
algorithm based on the method of steepest descent [1-5], and an idealized algo-
rithm based on Newton's method. These algorithms will be considered from the
points of view of: (a) rate of convergence, (b) efficiency of statistical perfor-

mance.

Speeding up a given adaptive process generally requires that the adaptive
parameters {weights, etc.) take values based on averaging over less input data.
The result is increased parameter noise and reduced average system perfor-
mance. When using a specific algorithm, there is generally a tradeoff between

speed of convergence and average statistical performance.

Two algorithms may be compared with each other when applied to the same
adaptation task by adjusting their rates of convergence to cause the same
eflective parameter noise. As such, the more efficient algorithm converges fas-
ter. Effective parameter noise is that attribute of the noise that causes loss in

system performance.
The steepest descent version of the LMS algorithm is
Wier = Wi + 2ue; X; . (1.1)
The p** mode of the mean square error learning curve has a time constant given

by

Tp

=1
'mee 4%

It is seen that increasing the convergence factor u speeds up the adaptive pro-

(1.2)

cess by causing the adaptive time constants to be reduced. However, to insure

stability in the mean, 12 must be kept within the bounds

——>u>0 , (1.3)
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where Apay is the largest eigenvalue of the input correlation matrix R. After
adaptive transients die out, noise in the weights causes, on the average, an
increase in mean square error over the theoretical minimum mean square
error. The misadjustment M has been defined [1-5] as the dimensionless ratio of
the average excess mean square error to the minimum mean square error. For

the steepest descent LMS algorithm,

_ _nf 1 .
M = putroce R = Z’_[‘rp,,.. . (1.4)

Increasing u speeds up the adaptive process but increases the misadjustment.

A "Newton's method” version of the LMS algorithm premultiplies the instan-

taneous gradient estimate 2¢;X; by the inverse of R. The algorithm is
Wj+] = Wj + ZMAMJR_I)(, . (15)

The scaling constant Aq,e (the average of the eigenvalues) has been included for
convenience. It can be shown that premultiplication by R~! causes each adap-
tive step to be taken not along the maximum gradient but instead in the direc-
tion toward the bottom of a quadratic bowl. The effect is very much like applica-
tion of steepest descent when all eigenvalues are equal. The eccentricity of the
performance function is eliminated by Newton's method as specified by (1.5).
Newton's method requires R~! which is generally not available. An attempt to
perform an algorithm like equation (1.5), only using an R"! estimated from input
data, has been reported by Griffiths and Mantey [6] and is summarized in sec-

tion 2.2 of this report.

For now, we shall focus our attention on equation {1.5), realizing that such
an algorithm, a true Newton’s method version of LMS, is a mathematical idealiza-
tion. It can be shown to have the following properties. Instead of there being a
number of time constants of the mean square error learning curve equal to the

number of weights (as with conventional LMS). there is a single time constant
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given by
Trnge = ——— (1.8)
R 4uday '
The misadjustment of algorithm (1.5) is given by
?

M=y.tra£el?=%{¢.—i . (17

The bounds on u for convergence in the mean are

-—1‘—> u>0 . (1.8)

Comparing the two algorithms, we make their u values equal in order to
have equal misadjustments. lmmediétely we see that the stable range of u for
steepest descent is smaller than for Newton's method wheﬁ there is eigenvalue
disparity. Since these algorithms are generally operated with small x4 to main-
tain small M, this is not necessarily disadvantageous for steepest descent. How-
ever, when the eigenvalue spread is extreme, steepest descent may be forced to
operate with a very small value of u in order to maintain stability. Under such
circumstances, steepest descent would be stability bound rather than misad-

justment bound.

With equal settings of u, both algorithms have the same misadjustment.
Under these circumstances, it is interesting to compare the Newton's-method
time constant (1.6) with the steepest-descent time constants (1.2). It is clear
that some of the steepest descent convergence modes are going to be faster
while some are going to be slower than the single Newton's method mode. If we
compare areas under the learning curves in order to compare "learning times"
of single mode exponential curves with multimode curves {as is done in Fig. 1.1),
it can be shown that when misadjustment bound, the learning time of steepest

descent averaged over random initial conditions is identical to the learning time
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of Newton's method. However, one should realize that the worst case learning
time for steepest descent will be worse than that for Newton's method by a fac-

tor of Amax/ Aave -

The behavior of the steepest descent LMS algorithm has been analyzed in
detail in [4] with a simple form of nonstationary input that results in the qua-
dratic mean square error function undergoing a random vector displacement.
The motion of the bottom of the bowl is first order Markov. Misadjustment
results both from noise in the weights and from the weights dynamically lagging
behind the bottom of the moving mean square error bowl. It is shown that the
total misadjustment is minimized when the rate of adaptation is adjusted (by
choice of u) so that both components of misadjustment are equal. A similar
analysis has been made for LMS Newton, and it has been found that the value of
M that optimizes steepest descent also optimizes Newton's method and that both
algorithms yield the same misadjustment for the same u. The conclusion is that
if the steepest descent algorithm is misadjustment bound rather than stability
bound, the conventional steepest descent approach gives identical performance

in a statistical sense to Newton's method with simple nonstationary inputs.

The Newton's method version of the LMS algorithm is about as effecient as
an algorithm can be, from the standpoint of statistical performance. For a given
number of weights and for a given level of misadjustment, the number of data
samples seen and consumed in the convergence process of LMS Newton is about
as small as nature will permit. Justification for this comes from study of adap-

tive behavior when learning with a finite number of data samples.

It is shown in Appendix A of reference [4] that when training an n-weight

adaptive system with N independent data vectors, the expected misadjustment

is

n_ number of weights
N  number of training samples

(1.9)
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This result was first reported without a complete proof in [1]. It is independent
of algorithm, as long as the algorithm is least squares. A few simplifying
assumptions were made to arrive at such an elegant and simple result. This for-
mula has been tested extensively by computer simulation and has been found to

\

be quite accurate for misadjustments of 25% or less.

Misadjustment formula (1.9) may be compared with that for LMS Newton
(1.7). The comparison cannot be exact however, because (\1 .9) applies to learn-
ing with a finite block of data while (1.7) applies to a steady flow learning pro-
cess. Actually, (1.9) applies to steady flow learning with a uniform moving-
average window while (1.7) applies to steady flow learning with an exponential

moving window. Reconsider equation {1.7). It can be written as

- n
M= i (1.10)

One can read this as "misadjustment of LMS Newton equals the number of
weights divided by the number of training samples,” if one considers that an
exponential process essentially settles within four time constants and that any
input that has occured more than four time constants ago would have negligible
effect on the weights. We conclude that LMS Newton hos the misadjustment of a
Jundamental least squares process. No adaptive process could have a lower
misadjustment than (1.9) or (1.10). No more “information” (in the common

English sense) can be squeezed from a given armnount of data.

We now know that the Newton's method version of LMS is as fine and
efficient an adaptive algorithm as can be. Unfortunately it cannot be imple-
mented unless one perfectly knows R~™). Without such knowledge, one can only
approximate LMS Newton. In application to adaptive FIR digital filters, perhaps
this or something approximating this is achieved by the adaptiv‘e lattice filter

algorithms that have appeared during the last half dozen years or so. Whether
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or not this is true remains to be seen.

With extreme eigenvalue disparity, stability may be of limiting concern
rather than misadjustment. To achieve maximum convergence speed with LMS
steepest descent, u would be set to 1/ Am,,. causing the slowest mode to have a
time constant of Amay/ 4Amin adaptations. Operating steepest descent at full
speed, the misadjustment would be M = traceR/ Apmax > 1. LMS Newton, doing
the same job, could be pushed much faster. Maximum speed would be achieved
by setting u to half of its upper stable limit, i.e. i = 1/ 2\, giving theoretical
(no gradient noise) convergence in one iteration. As such, its misadjustment
would be M = n/2. A 100 weight filter, for example, would have a misadjustment
of 50.

In most engineering applications, a misadjustment of 100% would be con-
sidered very high. The adaptive solution then gives twice as much mean square
error as the Wiener solution, i.e. 3 dB more mean square error. Only when the
mintmum mean square error of the Wiener solution is zero or very small would
high misadjustment be acceptable. Recall that misadjustment is normalized

relative to minimum mean square error.

In most engineering applications, a misadjustment of about 10% would be
satisfactory. As such, neither LMS/steepest descent nor LMS/Newton would be
pushed anywhere near to the brink of instability. Speed of convergence would
then be misadjustment limited rather than stability limited, regardless of eigen-

value spread.

It is safe to say that the steepest descent version of the LMS algorithm is
the simplest, most widely used, and most widely understood of all adaptive algo-
rithms. With all eigenvalues equal, its performance is identical to that of LMS
Newton. With eigenvalue disparity, its average speed of convergence and statist-

ical efficiency and performance with nonstationary inputs is identical to that of

N
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LMS Newton, except that its worst case convergence rate is poorer.

When dealing with an input signal buried in noise, the eigenvalue spread is
slight and one can be assured that LMS steepest descent will perform as well or
better than any other algorithm. When the input is stationary, noise free or only
slightly noisy, and when the input signal is narrow-band with a highly peaked
spectrum, eigénvalue disparity could be large or extremg. Under these cir-

cumstances, opportunities will exist to better the worst-case performance of the

steepest descent form of the LMS algarithm.
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PART 11

ADAPTIVE ALGORITHMS FOR NONSTATIONARY INPUTS
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2.1 INTRODUCTION

The preceding discussion points out that comparisons between adaptive
algorithms can be made on the basis of misadjustment and speed of conver-
gence. Often the jammers to be nulled are of a time-varying nature. In this
case, the concepts of misadjustment and speed of convergence have appropriate
counterparts. For the time varying case, one can view the algorithm as being
repeatedly restarted with only a fe?v input data samples available to estimate
the weight values required to null the changing jammer. As such, the speed of
convergence bf an’1 algoriihrﬁ relates to hbw well the élgorithm tracks’ or follows
a change. If a jammer changes position or changes spectral character, then the
optimal weights required to maintain the best possible jammer null must also
change. Tracking error refers to the difference between the average value of
the adapting weights and the optimal weights at each time instant. In a nonsta-
tionary environment, poor tracking implies that the ensemble mean of the
adapting weight vector is far from the optimal weight vector which would pro-
duce the best possible null. Weight misadjustment is related to the noise in the
adapting weights. If an adaptive algorithm is tuned to track a time-varying jam-
mer, it will exhibit some amount of weight noise. In fact, tracking ability and
weight noise are directly related. The better the tracking performance, the
higher the weight noise. ldeally, one would like an algorithm which is capable of
tracking a quickly varying jammer, yet show little weight noise. Part 2 of this
report‘develops several algorithms which show improvements of this kind over

conventional LMS.

This section begins with a discussion of the recursive least squares algo-
rithm for adaptive antennas. The algorithm will be developed in an exact least
squares sense, then a stochastic interpretation of the functionihg of the algo-

rithm will be given. The tradeoffs between misadjustment and tracking will be
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shown by actual simulations. A new algorithm will then be iﬁtroduced as a
method to improve the misadjustment /tracking tradeofl. Derivations of optimal
strategies for use of data will then be made, and the circumstances under which
the recursive least squares algorithm is optimal will be discussed. Comparisons
between the new algorithm and current techniques will then be presented. The
goal is to obtain optimal adaptive array performance with nonstationary inputs

consisting of signal, noise, and jammers.
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2.2 DERIVATION OF WRLS ‘
The weighted recursive least squares algorithm (WRLS) analyzed here has ‘
been previously described by others [6]. This discussion is included in order to h
{ |
_x establish terminology and to introduce recursive algorithms that can be applied |
-
1 to adaptive antenna arrays.
e

.,

%

Consider the Zahm beamformer of Fig 2.1. This antenna array is adapted so
that the filtered output of the auxiliary elements ¥ (¢) matches as closely as pos-
sible the output of the primary element d(¢). This results in an antenna array
sensitivity pattern which is as omnidirectional as possible while maintaining
nulls on the stronger incident signals. For the array of Fig. 2.1, the filtered out-

put from each auxiliary element is
wis.t) = ,f;o w5 (5)zi(t—5) . (2.1)

The weights are now assumed to be a function of the parameter s which will soon

be used to determine an optimality criterign. Define the vectors,

WI(t) = [wio(t) - - wialt)]” . (2:2)

x(t) = [z(t)m(t-1), - zm(t-n)]T . (2.3)
In vector notation, Eq. 2.1 becomes
w(s.t) = Wl(s)x(t) . (2.4)

The summed output of the auxiliary elements is

Y(s.t) = 8 wy(s.t)

=}

= $ wie)xe) . (2.5)

=1

To simplify notation later, introduce the combined vectors,
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Figure 2.1. Zahm adaptive beamformer.
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BT(t) = (wI(t) - - WR(L)]

x7(t) = [xT(t) - X2(t)) .
so we get
Y(s.t) = HT(s)x(¢) .

The instantaneous error is given by,

T e

vt(s.t) = d(t) - Y(s.t) .

(2.6)

(2.7)

(2.8)

(2.9a)

" The error criterion to be used for adapting the weights is a weighted sum of

squared errors,

€)= T adtete

$ at ey - rea)e
i=1

" (2.9b)

The a;{t) are weighting coeflicients which are usually chosen to weight errors in

the reé_:ent. past more heavily than errors in the distant past. The derivative of

£'(t) with respect to X(t) is

e(t
W {t)

]

sy 5 wwlo - 2]
i) 2&(!1:1(-&) - BTt )X(i)]xf(i)

{=1

To minimize £(¢), this derivative is set to zero, giving

- I1(3)
YI0)

‘tl 2oy ()(d (i) - HT(£)X()XT(4)

or

T a(OXEXTOEE) = 3 alt)d@XE)

i=] {=1

which reduces to

g - o it SR e R —

(2.10)

(2.11)

(2.12)
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i=1

-1
X(t) = [2 a.-(t)xu)x’a)] ‘}51 () (BX() (2.13)

The optimal choice of #(t) is given by Eq. (2.13), this value will minimize the
weighted error £'(t) of Eq. (2.9).

The basic problem associated with finding #(t) is that for each time step,
an (n+1)m by (n+1)m matrix must be inverted. For notational convenience,

define the matrix

-1
P(t) = [ﬁ] a‘(t)X(i)XT(i)] ) (2.14)

=1

To find #(¢t +1), the matrix P(t +1) must be found. Since

1]

P(t+1)

&

=1

[‘2’ a; (t+ 1)4!f(~;)x”(~i)]_l

ai(t+1)X(i).XT(i)+a,H(t+1)X(t+1)XT(t+1)}—l . (2.15)

Making certain assumptions about the form of the weighting ai(t) results in a
simple recursion in"which P(t+1) can be found from P(t) in order (m(n+1))?

operations. Specifically, choosing
o (t) = att iz=1,2 ...t (.16)

results in the widely used exponential weighting scheme, where the most recent
error sum (2.9b), makes the greatest contribution to the running mean square
error, and it has the greatest effect on the current value of #(t). Also, errorsin
the distant past make a relatively small contribution to £(t), and therefore have
a reduced effect in the determination of #(t). Figure 2.2 shows how the weight-
ing given by (2.16) can be interpreted as a sliding exponential window on the

mean square error. Assuming an exponential form for o (t) gives

{ #H i=1,2 ...t

ait +1) 1 i= el

@ a(t) i=1,2 ...
1 i= 41 (2.17)

e
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so BEq. (2.15) recuces to

P(t+1)

-1
[a i': a; ()XE)XT() + X(L+1)XT(¢ +1)]
i=1
-1
[ Py + xceenxr )™ (2.18)
The particular choice lor a value of a will be made later. For now, assume that a

is known. Fquation 2.18 can be simplified using the matrix inversion lemma

(Appendix A) to

_ 1 _ P(O)X(t+1)XT(e+1)P{t))
P(t+1) = ;{P(t) e mnata] (2.19)

Equation (2.19) gives a recursive update for P(t) which is far simpler than per-
forming a direct matrix inversion at each step. Also, due to the form of a,(t)

the update for #{t) becomes
H(t+1) = P(t +1)[aij a,()a{i)X{E) + d(t+1)X(t+1)] . (2.20)
=1

This expression can be combined with Eq. (2.19) to yield a recursive update for

»(t):

P(I)X(tﬂ)[d(t«c-l) - ﬂ’(t)X(t+1)]

B(t+1) = K(t) + o+ XT(L+1)PL)XE+L)

(2.21)

Appendix B contains all intermediate steps for deriving Eq. (2.21) from Eq.
(2.20). Equations (2.19) and (2.21) are the update recursions for the WRLS algo-
rithm.
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2.3 MISADJUSTMENT AND TIRACKING O1* WRLS
The WRLS algorithm given by Egs. (2.19) and (2.21) was implemented on a
two-element Zahm beamformer shown in Fig. 2.3. The two element array had

one incident time varying jammer, which generated a wavefront according to

W(t) = aclt)e(t) +a)t)et-1) , (2.22)

where €¢) is a white-noise sequence. Note that if ag(t) and a,(t) are constants,
the jammer is stationary. Allowing a time varying ag{t) and a,;(t) makes the
spectral character of the jammer change over time. The array spacing s and
the jammer angle of incidence y were chosen so that a time delay of one sam-
pling pgriqd existed between the signals received by the primary and auxiliary

elements. In the notation of Fig. 2.3, this is

x(t) = d(t-1) (2.23)

Specializing the situation to that described by (2.23) allows an easy calculation
of how the algorithm would optimally behave. This optimal behavior can be
found as follows. The array output is given by

et) = d —w(t)z(t)

=d(t) - w{t)d(t-1) (2.24)

The input is known to be generated by a process given by (2.22). An expression
for w(t) in terms of a,(t) and a,;(t) can be found which represents the optirnal

choice of w(t) to minimize E(g(t)) for every ¢, since

230)

Efate) - w(t)ae -1y

E[a, (t-n)elt-n) + a,(t-n)c(t—n-l)]

- w(t)[a, (t-n-1)et-n-1) + al(t-'n-l)dt—‘n—Z)]z

skt faZ(t -n-1) + aZ(t-n-1)] (2.25)

o gy e e - —

B[W(t -n) --‘w(t)i‘)'(t-‘n.—l)]z :

2. . S .
[:o'\t -nyrafit-n; - Eu,\.f,(a,(t—'n)a,(t—ﬂ--)] N




h

*Aeade aajjdepe wyez ybjam auo ‘ajduys y €2 d4nb4

12 ‘02 suojjenb]

STYM
xny
aumaa O
- ¥ (3)x q
(1) s

) W._ Aﬁ \\\

UOL3RU4BUIY
U0} IARM

(M

Jajyjusueay

v C




24

Taking derivatives and equating to zero gives the optimal w(t), denoted by
w’(t), as

0= -2 a.,(t-—n)a,(t—n—l)] +zw'(t)[a,e(z-n—-1) +a,2(t-n-1)] , (2.26)

or

a,(t-—n)a,(t-n-1)
al(t-n-1) + af(t-n-1)

w’(¢) = (2.27)

This formula for the optimal weight value requires complete statistical
knowledge about the jamming signal and is used only as a benchmark by which
to compare practical adaptive antenna algorithms such as WRLS. The WRLS
algorithm (2.19,2.21) was used to estimate w(¢) and plots are shown comparing
w(t) to w’(t) (Fig. 2.4).

The plots in Fig. 2.4 illustrate the tradeoff between weight tracking speed
and weight estimate variance. Fi:gure 2.4ais a plot of w°(¢), the optimal weight
trajectory. Figures 2.4b,c,d are plots 9! the adapting w(t) for progressively
larger values of a, the decay rate factor. A graph of af™ is shown with each plot
to give some visual idea of the relative error weightings. Note that decreasing a
(placing more importance on new data) leads to better average tracking of the
true parameter, but the adapting weight variance (misadjustment) is quite
large. Conversely, increasing a (corresponding to a decrease in the importance
placed on new data) the algorithm lags behind and tracks the opt.ifnal weight
poorly, but the adapting weight value has a low variance. The adapting weight of
Fig. 2.4b is considered to have high miadjustment, while the adaptive weight of
Fig. 2.4d has poor tracking qualities. In typical applications of this algorithm, a
choice of a is based on the tradeoff between these two properties. Such a choice
is shown in Fig. 2.4c, where both low misadjustment and good tracking proper-

ties are obtained. In the sections to follow, we develop a new class of algorithms
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which perform more efliciently in the misadjustment-versus-tracking sense
described above.
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2.4 STOCHASTIC INTERPRETATION OF WRLS

Note that the above derivation of the iterative recursions relied on a deter-
ministic weighted least squares error criterion. Equations (2.19) and (2.21) find
a set of weights ,{t) which are optimal for minimizing ¢(t), based on the data
sequence observed. From a stochastic point of view, this algorithm can be
viewed as an approximate realization of the ideal LMS/Newton algorithm. A sto-
chastic interpretation can be given for many of the quantities used in finding the
weight updates (2.19,2.21). The weighted mean squared error criterion can be
used as a performance measure, given by

Bt = £ff, atoew - ey (228

Proceeding in exactly the same way as before, we minimize this expected mean

squared error criterion by taking a derivative,

aﬁzt;(tt)» = alla(t) E[,t “*(‘)W")‘ﬂ’(‘)x(i))z]

[}‘3 2ac(t)(@ii) - HT(¢ >x<1»x’<t)] (2.29)

Setting this derivative to zero gives,

zLﬁ a(t)xmxf(i)]wt) z{i a(t)d t)xm} (2.30)

(1) {z}‘: a‘mx(t)xT(z)] [E m(t)d(tmi)]

{=1

[L (t)] ! % t)X(z)x'(z)]

"t a,m] m(t)dmxm] (2.31)

It the X(t) sequence is stationary, the term contained in the inverse brackets of
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(2.31) converges to an estimate of the autocorrelation matrix Rz,

=1

R=[§: m(t)]—l Lﬁ m(t)]

[é:‘ ai(t)] E‘il oy (8)X(1)XT (i) Lt a‘-(t)] ‘tl Qi(t)E[X(i)XT(i)]

= R . (232)

Similarly the last term in (2.31) converges to an estimate of the cross-

correlation matrix Fsq.
-1 o
[ﬁ, "‘*‘(‘)] E _i_ll aq (£)d(i)X(i)= [Zi)l cu(t)] L}_ﬁ‘ Gi(t)E(d(‘i)X(i)]
-1
= Pzd[‘tl 0‘-;(‘)] [‘Z::‘ cxi(t)}

Hence, in the stochastic sense the weight vector is given by
H(t) = RaNt)Paalt) (2.34)

where 13 =(¢) and }3 z4{t) converge in the mean to the true R,; and Py values it

the input signals are stationary. This is consistent with Wiener filter theory.

In the case that the input sighals are not stationary but are time-varying,
the quantities R (t) and P = (t) are sample mean estimates of the true time-
varying covariance matrix and cross-covariance vector. This is an important
point to be remembered for the discussion that follows. /n situations where the
input signals are non-stationary, the true covariance quantities Ry, and Py
will be functions of time denoted by R..(t) and Py (t).

Now, components of the iterative relations (2.19) and (2.21) can be com-
pared with those of the LMS/Newton algorithm. Normalizing (2.35) gives the fol-

lowing recursive relations:
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where the normalized constant K is chosen to be

=3 alt) . (2.36)

i=1

For the case of exponential a;(t) this reduces to

K = i: ot
=1
11 :‘;‘ (2.37)
This choice of K gives
K P(t) = R2e) (2.36)

Hence the algorithm (2.19) and (2.21) constitute a form of LMS/Newton algo-
rithm, with an adaptation coefficient which is time variable;
1
Ka+XT(t+1) RZNt)X(t+1)
= 1
= _ ) -~
5H—+ XT(t+1)RZME)X(t+1)

u(t)

(2.39)

So this gives the W (t) adaptive update algorithm as

H(t+1) = K(t) +y(t)§;‘(t).x(t+1)[d(t+1)—ﬂr(t)X(t-H)]. (2.40)

which is quite similar to the LMS/Newton form given in Part 1. An interpretation
for the action of the u(t) can be found by looking at the X'(t+1)ﬁ;‘(t)X(t +1)
term. If X(¢) is assumed to be a zero mean gaussian process, then the probabil-

ity of a given X(t) occurring is

———

e .. s
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H(t+1) = B(t) + a+X7'(t+1)1P(t)X(t+1) P()X(t+1)(d(t+1) — BT(£)X(t+1)) |
- 1 \
= H(t) + Kot T DRPOXET) KP(t)X(t +1)(d(t+1) '3
o - HT(t)X(t+1)) (2.35) :
: |
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- - 1 ~XT()RZIX(t) ’
P =z] = Gy Rae ) ¢ (2.41) T

Where R, is the covariance matrix of the mult.ivaria;e density. Since R is a 1
positive definite matrix, excursions of X(t) from the mean are decreasingly

probable. Also, since XTRZ'X increases for less probable X(t), u(t) is

.

decreased. Hence u(¢) can be thought of as automatically scaling the step size ; ‘

by the relative probability associated with a particular value of X{¢).

As is clear from the previous development, the WRLS and LMS/Newton algo-
rithms both perform an exponential weighting of incoming data. Single mode
exponential weighting is refered to ;1ere as a first order process. This terminol- ‘ ]
ogy comes from the form of the recursion used to generate exponential weight-~
ing. For this reason WRLS and LMS/Newton are called first order adaptive algo-
rithms. In the next section we explore the possibilities of higher order data

weighting schemes and the resulting higher order adaptive algorithms.
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2.5 ALTERNATIVES TO EXPONENTIAL DATA WEIGHTING

This section develops the intuitive justification for why nonexponential win-
dowing coefficients, a;(t). are desirable. A particular choice of the a;(t) can be
made by defining a suitable performance measure and by assuming some

knowledge of the nonstationary character of input signals, jamming interfer-

ences, and noise.

An exponential form for the windowing coefficients was assumed in section
2.2 in the development of the WRLS algorithm. The exponential form leads to a
simple, recursive way of estimating P(t), the inverse sample covariance matrix.

The unnormalized expression for P71(t) is

i

I?,,(t +1)
3 ()X (E)XT ()

=1

Y af X(E)XT(G) (2.42)
i=1

Pt -1)

]

This expression can be cast into a first-order recursive difference equation form

as
Ro(t+1) = aRg(t) + X(E)XT(t) . (2.43)

A more general class of estimators for R zz(t) can be obtained by allowing

higher order autoregressive moving average (ARMA) difference equations of the

form,

Rua(t+1) = apRu(t) + -+ +apRas(t—n) + b X(£)XT(t)
+ o+ bpX(t-m)XT(t-m) . (2.44)

This ARMA representation of the estimator has time invariant coeflicients and
can therefore be viewed as a linear, time invariant filter acting on X(¢)X7(¢), to

produce R 4 (t). The z-transform of the process given by (2.44) i's

A(2)Re(z) = B(2)X(2)X(z) (2.45)

e R e 4wt AL
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where A(z) and B(z) are polynomials of the form

Alz) = 1-a27 ' —ap272- ... ~qg,2™® (2.46)

B(z) = b, + b1z  + bz R+ - +bp2z™ (2.47)
and z~! represents a unit delay. Equation {2.45) can be rewritten as

Re(2) = {-{f{-xmﬂ(z) . (2.48)

The polynomial ratio B(z)/ A(z) represeits the z-transform of a filter with input
X(2)X7T and output R sz(2). Figure 2.5 illustrates the idea. The B(z) polynomial
possesses m roots. These roots are commonly referred to as ‘zeroes’ of the
filter. Similarly the 4A(z) polynomial has n roots called the 'poles’ of the filter.
These names come from the effect a root of the polynomial has on the filter

transfer function,

H(z) = 22 (2.49)

A root of B(z) will cause a zero in H(z), a root in A(z) will cause an infinite
value (or pole) in the value of H(z). This z-transform notation has been intro-
duced so that the frequency response of a filter may be easily understood. The

free variable z is a complex number, whith when given the value,

z = eleT (2.50)
and substituted into (2.49) gives a complex number for H(z). The magnitude of
this number represents the magnitude of the response of the filter to a

sinusoidal input at frequency f = %ﬁ Figure 2.6 shows this idea.

A frequency domain interpretation of (2.48) lends valuable insight into the
significance of allowing a higher order estimator. The z-transform of the first

order estimator of Eq. {2.43) is

e ~_\‘“:, y :h’j;'y'p\—':‘ fan s
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X(2)x () ] Blz R (1)

Linear Filter, Transfer Function H(z) = 2 :

Figure 2.5. Representation of the general estimator as a linear filter.

Unit Power Input
w

Sinusoid of Frequency o1

Envelope Detect

JT
[x(t)|e> [H(e ")

N

Transfer Function H(z)

Figure 2.6. Evaluation of frequency response of a linear filter.
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(1—az™)R o(z) = X(2)XT(z) (2.51)

Ralz) = [TL;.T]X(Z)X"(Z) : (2.52)

This is the same transform that was performed to arrive at (2.48). This is shown

or

e in Fig. 2.7. The form of (2.52) tells us that the exponential window acts as a sin-
gle pole filter. This single pole estimator is a low-pass filter with cutofl a. Intui-
tively, this means the estimator passes low frequency (slowly varying) com-
ponents of the X(t)XT(t) sequence, while rejecting high frequency (quickly vary-
ing) components of X(¢)X7(¢). A plot of the response of the filter described by
(2.52) as a function of frequency is shown in Fi;,. 2.8. Note that the general esti-
mator of Eq. (2.48) allows many poles and zeroes. Because of this, proper choice
of the a; and b; coeflicients in (2.46) and (2.47) will place dips and peaks in the
frequency response of the filter. In the case of the single pole estimator, the
only choice to be made was where the frequency response starts to drop. The
more general formulation with its increased degrees of freedom allows a fairly

arbitrary frequency response.

The usefulness of the more general formulation can be pointed out with a
simple example. Recall that in situations where the jammers are nonstationary,
the covariance matrix will be dependent on time. Suppose it is known that
R (t) as a function of time, has a certain spectrum. A component of the Rz (t)
matrix will typically have a spectrum as shown in Fig. 2.9a. A finite time average
of the same component of X(¢)X7(t) will usually have a spectrum like Fig. 2.9b.
Generally, simple averaging or exponential averaging (as in section 2.2) of
X(¢)XT(¢t) will not give a spectrum which matches the Lrue R (t) spectrum.
This discrepancy arises because for non-stationary situations, the time averages

used to estimate R, (¢) are not the same as the ensemble averages which
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X(t)XT(t) ‘ > R (t)
=i —H 1 - az”) XX
Figure 2.7. 2-transform representation of first order estimator.
a.0
20 Yog |H(z)]
ds
f
Figure 2.8. Frequency response of first order estimator.
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constitute the true K (¢) . Clearly, something better than a simple average
must be used. Intuitively, the estimator acting on the data of Fig. 2.8b should
attempl to notch out those components with smatl magnit.tide in Fig. 2.9a. A
general filter such as the one in Fig. 2.5 could do this easily, while the single pole
filter of Fig. 2.7 would be a compromise at best. Figure 2.10 shows this pictori-

ally. Thus is very similar to the matched filter concepts used in signal detection

theory.

For this preliminary investigation, an all-zero filter approximation to the
pole-zero form of (2.48) will be made. As shown above, the first-order estimator
for R (t) had two expressions: a single pole {autoregressive) form, Eq. (2.43),
and a multiple zero {moving average) form, Eq. (2.42). Equation (2.43) is called
a parsimonious representatiion of the estimator, since it requires only one
parameter {a) to describe it. Since practical considerations require a fixed
memory size, Eq. (2.42) cahnot be implemented directly. A good approximation

can be made by choosing a sufficiently large m so that a™ = 0, which gives

Re(t)

P ot~ X(i)X7()
£=1

i=t-m

Yt X@)XTE) (2.53)
A development for the general autoregressive model demonstrates that if

Ro(t) = auR o(t) + -+ + a R (t—n) + X()XT(t) . (2.54)

it can also be estimated by a moving average process,

Ralt) = 3 aiex@r() . (2.55)

i=t-

The representation is perfectly accurate if | = £ —1, and is usually quite good if !
is taken to be large but fixed. A proof of this result can be found in [10]. The

result of these steps is that the estimator for R (t) (2.44) can be represented
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(a) Desired spectral character of X(t)XT(t) filter.
(b) Single pole approximation--chosen by user for best
tracking/misadjustment combination.
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by the simple moving average process

Rult) = 3 a(t)X(@XT(E) (2.56)

t=t -

The cost of formulating the problem this way is one of a large memory require-

ment (more than is absolutely necessary); the advantuge is a form for the esti-

mator which is readily calculated. '

Since Eq. (2.44) had constant coeflicients, the a,(¢) coeflicients will depend !

only on the index ¢t —i. This result can be found in [10] So define
c(t—i) = oylt) (2.57)
which gives
Ro(t) = ‘_f‘] el SXE)XTE) . (2.58)

Equation (2.58) represents R 2z(t) as a convolution of the sequence c(i) and

X(i)XT(i). In this context, the c(i) have an interpretation as the impulse

response to the linear filter of Fig. 2.5 and can ke drawn as in Fig. 2.11. |

Up to this point, the concept of windowing has been applied only to estima-

tion of R (t), but Py (t) must also be estimated by the same window,

Pult) = % c(t—)X()d(E) . (2.59)

i=g~l

Note that because arbitrary c(i) coeflicients are allowed, the efficient (order

({(n+1)m)?) update will not work. Hence R.(t) must be found using equation
2.58, then inverted at each time step. A single inversion of R, (¢) requires an

order of ((n +1)m)3 operations, which is not computationally acceptable. Com-

putational issues will not be considered presently, since the point of this investi-
gation is to determine if allowing arbitrary windowing coeflicients ¢ (i) results in
an improvement of the algorithm's performance. In subsequent investigations,

the iterative inverse algorithm [11] will be used as a means of alleviating this

i R e e
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Convolve With

(e’ (t) ——  clt-1) Ry () =

c(t-1)x(t)xT(t)

| e d
(=)

Impulse Response of Filter of Figure 2.5.

Figure 2.11. Realization of Filter of Figure 2.5.
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2.6 AN OPTIMAL WINDOW CRITEIUON

The adaptive algorithm given in section 2.2 (Eqs. 2.19, 2.21) forms estimates
R..{t) and Py(t). Using these estimates the algorithm finds a weight vector
H(t) which will place a null on the jammers present. Section 2.4 discussed the
fact that when the jammers are time varying, K;; and P,y become time varying
quantities as well. Therefore, the problem is reduced to estimating time varying
covariance quantities, Ry;(t) and Pgq4(t), as accurately as possible, to null the
jammer. 1t is desired to form this null quickly, while simultaneously maintaining
an acceptable level of weight variance. Weight variance is undesirable sincé it
may lead to signal cancellation [12]. Generally, the time varying jammer
parameters are assumed to be stochastic processes. For this development, a
certain subset of the jammer parameters G;, will be allowed to change in time,
and their values will be found as the output of a filter driven by white noise (see
Fig. 2.12). Specifically, the jammer will have time varying frequency charac-

teristics as shown in Fig. 2.13.

R.;(t) and Py (t) will be found as weighted sums of past data, as shown in
Eqgs. (2.58)and (2.59), of section 2.5. With the above formulation, the idea is to
now choose the window coeflicients ¢ (i) so that ﬁ,,(t) is in some sense a best
estimate of R (t). Mean squared error will be used as a measure of quantity of

the estimate. The problem then becomes,

Vinimize E[||Ree{t) ~ R ()l 17] . (2.60)

For this preliminary investigation, values of ¢ (i) will be found which optimize the
quality in (2.60), and then used to estimate the Pgy(t) vector. A totally general
approach would be to define some performance criterion which measures the
accuracy of both the R (t) estimate and the Pg(t) estimate. This more gen-

eral development will be pursued later this year. Since Rz (¢) and }‘i:,,(t) are
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matrices, a matrix norm must be chosen to give (2.80) meaning. A simple norm

could be obtained by changing (2.60) to
: . . - s z
M%gﬁze E[trace (R (t) — R (t))?] . (2.81)
A solution for (2.61) may be approximated by assuming the array to have only
one auxiliary element, and solving

Minimize E[g,(t) - 8o (1)) (2.62)

where g, (t) is the zeroth order time varying covariance lag,
golt) = E(zf(t)|s,) (2.63)

and

Po(t) = i; c(t—i)X2@E) . (2.64)
i=t ¢

In making the above assumptions, the major simplification arises by performing
the minimization on the squared error of the zeroth order lag. The assumption
of only one auxiliary element does not decrease the generality of the result, but
does decrease the notational complexity.

The solution to Egs. (2.62) through (2.64) is a simple result of Wiener filter
theory. Let

Z(t) = Xx{(t) . (2.85)

and minimize (2.62) by setting its derivative with respect to the C(i) equal to

zero. This gives

ST 0 gl B () =B () =ttt
) o _
- F(:‘—?T‘”‘“”“’t".?.., c(t-)ZE)D f=tt...t
. =EEE@mB - X c(tDZ@ZGY jet-lt  (260)

or
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3 eu-nEzzo) J= {8 026)) j=t-te

i=t -~
Equation (2.67) can be more efliciently stated in matrix notation as
R.,C = P,
or
C=R2P, .
where

ZT(t) = (z(t-1), z(t=L+1), ..., 2(¢)]

R

E[Z()ZT(t)]

Py, E[Z(t)p,(t)]

= [e{l-1), e(l-2), ..., c(1)]

(2.67)

(2.68)

(2.69)

(2.70)
(2.71)
(2.72)

(2.73)

Equation (2.68) is a large, Toeplitz set of equations. Typical values of I are about

200, which allows for a good approximation of the AR part of the estimator (see

discussion following Eq. (2.52)). The quantities R,, and P,, are found from the

statistics of the time varying parameters of the jammer.

Examples of solutions to (2.69) for certain assumed jammer models will now

be given.
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2.7 DETERMINING AN OPTIMAL WINDOW FOR A SIMPLE. NON-STATIONARY JAMMER
An optimal window will now be found for a jammer using a single zero pro-
cess Lo generate its wavefront. Figure 2.14 shows the antenna configuration, and

how the jammmer wavefront is generated. The jammer wavefront is given by
W(E) = w(t) + ay(t)u(t’-1) (2.74)

where u(t') is a white noise sequence. Note that the same antenna configuration
outlined in section 2.3 is used here. This configuration will be used throughout
this part of the report to allow a common basis for comparison. The signal at

the auxiliary element would then be,
z(t) = u(t'-n) + o (t' ~n)u(t' -n-1) . (2.75)
For simplicity, shift the time index relative to x, so that £ = t'—n , giving
z(t) = u(t) + a,(Hu(t-1) . {2.78)
As outlined previously, a,{t) is generated by a time invariant stochastic process.

This formulation of the problem can now be solved using the techniques
presented in section 2.8. First form R.;, then find P,,, and solve the resulting
set of linear equations. Expressions for the K., matrix and the P,, vector will be
found for each component. These components will then be reassembled to find

the matrix and vector.

An expression for Ry, will be given as a function 1,7, which indicate which
row and column component (respectively) this expression represents. Both 1

and j range from ¢ —! to ¢ since Ky, is! by ! matrix. First,

2 (i)z (5)
2(4)2%() |
Eut) + a,uG-02wG) + a,iuG-0Y . (@)

Rag(i.f)

and assume u (¢) is a white noise sequence,
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Jammer Wavefront

W(t) o2l
‘ +
: Time Varying e(t)
. zero [——D
f \ o xv
u(t) R
—pf 142, (t)2 ——» H(t)
4 ‘ Adaptive]
lgorithm
Linear
Filter
q(t)

Figure 2.14. Single zero jammer wavefront generation.
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! Figure 2.15. Model of first order Markov process generating a](t).
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P B IR Y 5
Efu()u()] = { o oicy (2.78)
Multiplying out (2.77), distributing expectations, and substituting (2.78) gives
E[z2()z%(j)] =" Elu®(i)u?()] + Elaf (i )ui-1)u%j)] +
}

4E[a\(i)a,()uliuGlu(i-1uG~1)] +
Ela} Gt -1u%0)] + Elef (e fGlu(i-1u¥(j-1)] . (2.79)

Now assume a(t) 1s uncorrelated with ¥ and has zero mean. Denote the expec-

tation operator as -

E(z) = £, (2.80)
which gives l&
E[z%)z%j)] = wT0u%) + aZ{@)uili-1uiy) |
+ 4a, (D, [NuFuGiui-Nu(-0) *

+ a2 -1)u) + ey (Baf§lufli-1)uG-1) (2.81)

Further, since a(t) is a stationary sequencc the value of R, (i.j) depends only

on |i—j|. From {2.81),

ZH(1+a¥) + 6uTal

[i-j1=0
R (ig) = | w%a? + u(1+aZ+af(1)af () :i—j:=1 (2.82)
i-j|=2

2¥(1+2a%+af(1)al())

An expression for P;, will be found in a similar way. Component i of the P, |

vector will be denoted P,,(i). The components are found as, 1
P, (i) = E(zz(i)Pt) (2.83)

where i ranges from ¢ to t~{. P, is the expected value of the power of  given

knowledge of the value of Lhe stechastic nararaeter a, (t), A

A = Ezxe)la,t)]

-y B8 SRR < bitahovt i .
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"

Efu(t) + ay(t)u(t-1))/aft))

w¥(t) + al(t)ui(t-1)

"

n

j Now find P;,(i) as

Pay(i) = E[z®(i)u?(1 + af(t))]

E[(u(i) + a,(2)u(i-1))2u?(1 + a2(t))] . (2.85)

"

Making the same assumptions used in obtainir:g (2.81), gives
P (i) = u®(1+2af+af())af(2)) (2.86)
Since it is desired to find the C vector which solves
RC = F.,. (2.87)

The matrices R;; and P, can be scaled by an arbitrary constant without

affecting the solution. Dividing by u?® gives

K,(1+a}) +6a} li—f =0

Re(ig) = { Kua® + 1 +af +af(@)ef()  li-jl=t (2.88)
1+ 2a% +af()a?() li-ji>1
and
Piy(i) = 1+2a} +af(@)af(t) (2.89)
where K, is the kurtosis of u, given by
—
u
= 2.90
i (2.90)

Next, some model for how the a,(t) sequence is generated must be
assumed. Often the a,(f) sequence will be a first-prder Markov process, which

can be approximated by driving a single pole filter with white gaussian noise,

a,(t) = aa,(t-1) + (1-a®)V2q(t) (2.91)

1?{1 + al(t )] (2.82)
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where g {t) is the white gaussian noise sequence. The value of a,(¢) is a funiction
ot its last value and the random g(t) sequence, hence the name first order Mar-
kov. Figure 2.15 illustrates the generation of a,(t) in the z-transform notation

of equation (2.45). The autocovariance of a,(t) is given by

E[(a,(i)a,(3)] = ¥ (2.92)

where k =i-j. A derivation of this result is presented in [14]. Note also that
since ¢(t) is a gaussian sequence, the output of the linear filter a(¢) will also be

gaussian (this result can be found in [13]). Because a,(t) is gaussian, its fourth

order moments can be broken down as,
E[(a%@)a?G))] = E[@GNE@GN] + 2[El@@aG))] . (259)
Substituting (2.92) gives

E[a%(i)a®(j)] = 1+ 2a?l%l | (2.94)

Using this result, (2.88) becomes

ky(1+ks) + 6 li-j{=0
Ri(i.j) = { ky +3+2a%1 ji—j| =1 (2.95)
{4+ 2q2/t71 fi—j>1
and (2.89) becomes
P, (i) = 4 + 2ot~ (2.96)

Since a,(t) is gaussian k, = 3.

There are two major points to be made about (2.95) and (2.96). First, the
assumed first order Markov variation of a,(¢) results in an exponential window-

ing form of the ¢ (i) when k,, is small. This result is found by solving

C = Rz"'F~,, (2.97)
using {2.93) and (2.68). The c{i} turn out to be ~xponential with decay factor a2,

The c{i) to not exactly follow decay for values of i near 0 or |, but these effects
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are due to the finite length window and are negligible. The point is that
exponential windowing of data is optimal when the time varying parameters are
first order Markov. The second point is to interpret the meaning of the kurtosis
of u, and observe the eflect k, was on the optimal window. Since u(¢) is zero
mean, k, (see Eq. 2.96) can be viewed as a measure of the variance of the power
of u(t). A large k, means that the power of u(¢) undergoes large changes in
comaparison to its average power. A small value of k, means the u(¢) process
u(t) was small deviations about its average power . Note the effect this has on
the window, large k, values force F., close to a tridiagonal form which means
the c (i) coefficients decrease slowly. This is intuitively understandable, since
more data will be required to form a meaningful average of v (¢). Small k, does

just the opposite making the ‘c (i) coeflicients decrease exponentially.
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2.8 AN OPTIMAL WINDOW FOR A NON-SIMPLE NON-STATIONARY JAMMER

This section presents an optimal window for a jammer using a multiple zero
filter to generate its wavefront (see Fig. 2.16). The angle of arrival () is held

constant, and the frequency components of the jammer are varied. The wave-

front of the jammer is generated

F(t) = a,(tHu(t) + -+ +ap(t)u(t'-k) (2.98)

where «{t) is a gaussian, white noise sequence. The signal at the auxilliary ele-

ment is,

z(t) = ap(t'—mlu(t'-m) + - + a(t' ~m)u(t'—k-m) (2.99)
and redefining the time index as in Section 2.7 so that ¢ = ¢ —m gives

z(t)

o (E)u(t) + -+ - + ap(t)u(t—k)

P a (u(t—n) . (2.100)

n=0

The coefficients a;(t) are time invariant stochastic processes which represent
the time varying nature of the jammer. As described before (section 2.5), this
filter is a moving average {all zero) type, which means that for a fixed set of
a;(t), z(t) has a frequency spectrum with n dips in it. The specific character of
the dips is a function of the u; (), hence if the a;(t) are allowed to change, the

spectral character of the jammer becomes the varying.

An optimal window for the data of the above described jammer can be found
by following a similar collection of steps to those of section 2.7. First, form the
Ry and P, quantities, then solve for the optimal window. The R,, matrix and
Py, vector will be determined in a component-wise fashion to make the deriva-

tion more clear. Once these component expressions are determined, they will

be combined to form K., and P,,.

The R,, matrix will now be found. Let the components of R, be denoted

e et
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: % Jammer Wavefront
W(t) o—dt)
+
Time Varying W(t) e(t)

,‘ xeroes
e, ot a(t)
3 ———Cl:o(t)ﬂ](t)z-]*---ﬂk(t)z—k —

10 Adaptive
ai(t) Algorithm
Linear
Filters
9 (t)

Figure 2.16. Multiple zero jammer wavefromnt generation.
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Figure 2.17. Model of n'M order Markov process generating a(t).
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Ry (i.7). where i is the row index and j is the column index which locate the

component in K;;. Bothi and j range from ¢t - to ¢t and K, is an! by ! matrix
Rufid) = Ee()2())

E[E(z (1)2(5) lam(D)an (1)

E{E(=2()2%() | (1) (5))

(2.101)

The last equality of (2.101) indicates how Rz will be found. R, is formed by
first taking an expectation over z given the random a,, (i) coeflicients. Then an
expectation with respect to the a,(i) coeflicients is taken giving R,.. The
assumption that u(t) is a gaussian sequence in (2.98) implies that z (t) is also
gaussian since it is a linear combination of past u(t) values. This gives the

simplification,

E[z%(i)z%(i) am(i)an (5)) = E[2%(i)lam(i))E(z3(F) an(5)] +

2[Elz)2 (1) anWan ()] . (2.102)

Now,
@) = L an(ui-m) (2.103)

and
2%6) = 3 3 an@u(i-m)a.(uli-n) (2.100)

m=0 nz0

which results in
El@lan@] = £ § am@an@futi-miua-n) . (@109)

Note that E[u(i-m)u(i-mn)] is nonzero only when i—-m =i-n. So (2.105)

simplifies to

E[2%() |am ()] = n);a,ﬁu:)a? . (2.106)
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Evaluating the second term in (2.102) gives,
Hre)lanent)]) = B F an@an()Efuti-myu(i-n)] (2107
where Efu(i-m)u(j-n)) is nonzero only when i-m =j-n. This lets (2.107)
simplify to

Elz(0)z() lan()an ()] = &

m=0

O (1) 12 (5 )27 - (2.108)

where ' =i—j andU'sk. Fori >k, Ep(1)2(j)lam(i)en(s)] = 0.

Now evaluate F,;(i.j) by taking expectations of (2.108), and (2.108). This
will be done in two parts. Ry is I by ! so !’ =i—j ranges from 0 to ! . The
length, k, of the all zero jammer wavefront generation process is not related to
the length of the window, . Hence k can be greater or smaller than !. The fol-
lowing development covers values of R (i.j) for any k,l. The two cases to con-

siderarel <k andi > k. First, for!' <k,
Fle@e0)] = 65 § oty
+E{2’"—$ Z‘o E am(i)a,,..,-(i)an(i)a,.,,-(j)} (2.109)
Denoting expectation by over-bgrs as in'Eq. (2.80) of gives

Elz@)z()] = & L}‘jo $ axmera +

+2 'i__.'o ‘ffo am(i)a,,.,,'(j)a,.(i)a,.,xj)] (2.110)
Now, for U > k,
Ee@e@) = @ 8§ ZZ@edm (2.111)

To achieve a further simplification, assume that the sequences a,, (i) and a, (§)

are uncorrelated for m#n and that they are zero mean, which makes
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g (1)a,(j) = O for m#n . (2.112)
Substituting this into (110) and (111) gives,
Tl ISRHOT RS W) ’Zi)a.?(j)] =0 T
m =0 n=0 m=0 n=0
(kT k-
. Elz)z()) ={#F | ¥ E@G) + 2 i’ am‘f‘_?—u)am,n(z‘)] 0< U] <k
2 o
d u? i K‘T‘]@)W) k<l (2113) .
Next assume that the a, (i) are all identically distributed random variables,
which gives the final simplification. Fori—j = 0,
plew=)) = #p 3 @@-Fpo § § @]
= o 3(k+1)(a* + k(aD)?) . (2.114)
For1<|i—j| = |l'| sk
sewee) = @ [§ @0m - @ f § F 'S @) f
S [(k+1) a%(1)a%G) + k(k+1)a% + z(k-u'|+1)a'~’°] (2.115) E
and for k£ < {I'] }
!
E(z(1)2() = J"Lio COROEES T ) ‘f'] ’
|
= o [(lc+1)a (D)aZ(G) ~ (k+1)a? + (k+1)%(a% 2] . (2.118) i
Since a(i) is a stationary sequence, let
' g
{ ]
1 e - .
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pw(l) = a¥@)a®G) . U = i-j . (2.117)
Combining 2.114, 2.115, 2.116 and 2.117 gives, ‘
. |
3(k +1)(a* + ka®) U =0 h
(W32 E[z(@)z(j)] = { (k+1)ept + (k2+3k-2()+2)(a®?1<U' <k (2.118) ‘
(k +1)pus (1) + (k2+k)aT k<! |
. i
t' Next the elements of P,,, denoted as P, (i), will be found. The index i
(4
. ranges from ¢ -l to ¢ and indicates where the component belongs in the P;, vec-
-
g tor. First,
P (i) = E(z*(i)F,) :
= E[E(E@*(i)P lam(i))] . (2.119) :
where
P = E[z%t)]|an(i)]
= % aie)a? . (2.120)
m=0 .
The last equality is the result of Eq. (2.108). To evaluate (2.119), an expression ' k
for the conditional expectation term must be found. Using Eq. (2.120) gives ;
E[z20)P |an®] = 5§ aZ@ad)a® (2.121) i
m=0 n=0 s
since the u(¢) sequence is white. Now taking expectation with respect to am (i) ; i
yields the total expectation, i :
N - (
2(; = T* S TEAYLT) ‘,
E[z%(i)P] = u aZ@)a() . (2.122) |
mz=0 n=0 |
|
Now, as before, assume that the a,, (i) are uncorrelated, zero mean random vari- |
ables, which results in the condition shown in equation 2.112. Also assume that § !
the a,, (i) are identically distributed for ali m. This leads to a simplification of !
(2.122) to
Bl = TPk +1)a + k (k +1)a®) Pk ;
[#5EP = ) 22 (k4 1)poa (i) + k(k+1)a®D) i <k ' :
§
) M RET R T ————- "
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Equations (2.118) and (2.123) represent component descriptions of Rz, and
P., in terms of the values of a%a? and g, (i). These quantities are all deter-
mined by the dynamics of the a;(t) coeflicients. Since it was assumed that the

a(t) are independent, and identically distributed, only one model is required to

find the unknown statistics of the a;{¢). The random variable a(t) is used to
represent the statistics of all the &;(¢). A good model of how these coeflicients

change is to assume the a(t) is an n-th order Markov process, that is,
a(t) = ya(t-1)+ - - +ya(t-n) +q(t) , (2.124)

where g(t) is a gaussian white noise with zero mean. Figure 2.17 shows the z-
transform representation of how a(t) is generated. The actual a;(f) sequences
used for simulation are generated as shown in Fig. 2.17, but to make them
independent, k independent q(t) sequences are presented to k separate ,but
identical, filters (see Fig. 2.18). Since the gain k is variable, the g;{¢) sequences
can be restricted to being unit variance with no loss of flexibility. Since g(t) is
gaussian. a{t) is gaussian since the filter acts as a linear operator. To find

#os(i—7). the fact that a(t) is gaussian gives

E(a?(i)a?(5))
E(a®(i))E(a?(5)) + 2(£(a(i)a(5)))?
(@®)? + 2054, (i-5) . (2.125)

Poo(i—7)

The a(t) sequence is stationary and therefore g,a(i—j) represenis the auto
covariance matrix of a{t). Values of g,, (i —7) may be found by the spectral fac-

torization theorem [14] as

- , k2
®aa(k) = Inverse Z Transform {(1 Y zy(z‘W} . (2.126)

The point is that pe, (k) is readily obtainable, given the ¥(z) polynomial.

Since a(t) is gaussian, it is known that af = 3:?2. These results may be sub- 3

stituted into equations 2.118 and 2.123 to get,

- e - - e s - -
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3(k +a)(3+l«:)522 o=1
uT? B(z¥(i)z2()) = {2k +1)pL () + (k2 +4k —2)U) +3)a® 1sU<sk (2.127)
2k +1)pZ (L) + (k2+2k +1)a% k<l
and
; | (k +1)(3+ k)T i=1

Using the above equations, an optimal window was found for the process
a;(t) = 1.98a;(t~1) + .9801 a;(£-2) + g¢(¢) (2.129)

which is shown in Fig. 2.19. The same setup as described in section 2.3 is used
for a performance comparison between an algorithm using an optimal window
and an algorithm using an exponential window. Figure 2.20 displays the result.
The antenna array employing an optimal windowing strategy tracks the changes
in the true parameter more closely. The value of the decay constant, «, for the
exponential window was determined so that both algorithms had the same
weight variance. Further, Fig. 2.21 shows another comparison where the
exponential windowing algorithm was allowed to have a higher weight variance
than in Fig. 2.20. Note that even in this case, the tracking properties of the
optimal windowing algorithm are superior.
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2.9 CONCLUSION AND SUGGESTIONS FOR FURTHER STUDY

The weighted recursive least squares algorithm has been derived in the con-
text of realizing a Zahm adaptive beamformer. This algorithm has been shown
to be a practical implementation pf the ideal LMS/Newton algorithm. The ability
of the algorithm to track a time-varying jammer was shown to be highly depen-
dent on the exponential decay rate of the weighting coefficients. Minimization of
mean squared error averaged over the nonstaticnarity was found to involve a
tradeoff between weight variance and weight tracking speed. The restriction of
considering only exponential weighting of the outputs was then removed and a
method for finding a more complex, higher order optimal weighting was given in
sections 2.5 and 2.6. Section 2.7 demonstrated that the use of an exponential
weighting is optimal when the parameters of the jammer are changing as a first
order Markov process. Secion 2.8 demonstrated that the use of an optimal
weighting on the error outputs results in an improvement of the tradeoff
between parameter variance and parameter tracking. Combining these results,

if the jammer is believed to have a simple time varying nature, exponential

weighting may be employed by a recursive algorithm with near optimal result. If
the jammer is thought to have a complicated time varying structure, it would be
worthwhile to find an optimal data weighting and use this for implementing the

adaptive algorithm. Considerable improvements in performance could result.

Further study will involve defining a more general estimation error cri-
terion than the zeroth-order lags proposed here. Also, this performance cri-
terion should include some contribution from errors in estimation of the cross
correlation vector P,, (of section 2.4). Work should also be dene in developing a
recursive algorithm such as the iterative inverse using the higher order weight-
ing techniques. Finally these results should be extended to an n-element Zahm

array and other types of adaptive arrays. W
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3.1 Introcduction

Another way to improve the effectiveness and lower the cost of an adaptive
beamformer would involve the use of a new underlying beamformer structure.
In most broadband beamformers the basic structure is that of a multi-channel
FIR (zeros only) digital filter. In this section we describe a beamformer that is
based on both IIR and FIR {both poles and zeros) filtering. It will be shown that
an IR beamformer gives improved nulling performance over the conventional
FIR beamformer. As the hardware becomes available, beamformers based on IIR

filtering may prove Lo be extremely valuable to the beamforming community.

3.2 Broadband Beamnforming

A narrowband beamformer uses a complex gain at each element to perform
the antenna weighting. A complex gain is realized by using a 90 degree phase
shifter to split the signal path into seperate in-phase and quadrature phase
channels. Each channel is then ted through selectable attenuators correspond-
ing to the real and imaginary part of the complex gain. Finally, the two channels
are recombined by summation. A beamformer using complei weighting can null
interference which is of narrowband hature only and is therefore useful only in

systems where the desired signal is narrowband.

In a broadband communication systern such as spread-spectrum, it is
necessary to use antennas operating over a much broader bandwidth. Broad-
band adaptive antennas were first proposed in [2]. These systems differ from
the narrowband beamformer by replacing the complex weights with tap delay
line filters. A tap delay line filter is commonly refered to as a finite impulse
response or FIR filter. A beamformer using FIR fiiters rather than complex
weights is able to use temporal as well as spatial information to eliminate

unwanted signals and to pass the signal of interest.
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Another class of digital filters are those possessing an infinite impulse
response and are appropriately calied IIR filters. An IIR filter in many cases will
require far fewer weights than an FIR filter to achieve an equally eflective fre-
'quency response. In figure 3.1, the frequency response of an FIR and an 1IR digi-
’tal filter are contrasted where the desired chacteristic is to pass all frequencies
except those in a narrow region. For equal number of weights, notice the
improved performance of the IIR filter over the FIR filter. 'With these results in
mind, we set out to investigate the application of iR filters to adaptive beam-
forming. When adapting the weights of an IIR filter to achieve a desired eflect,
one encounters many problems. In the signal processing field, ;here have been
many attempts over the past ten years or so to try to.aevélop a reliéble algo-
rithm for adaptive IIR filtering [15,16]. Recently, we have developed a novel
technique for implementing an 1IR adaptive filter and are investigating it‘in
applications to digital filter design, adaptive contol, adaptive noise canceling,

adaptive line enhancement and to adaptive beamforming.

In the next section, we will briefly describe the Zahm beamformer and show
its similarity to a general purpose adaptive filter. We will then describe our new
technique of 1IR adaptive filtering and give simulation results demonstrating the

performance of an IR Zahm beamformer.

3.3 Broadband Zahm Beamformer

A two element Zahm beamformer is shown in figure 3.2, The signal to be
received is assumed to be of low power compared to interference (jamming) sig-
nals. The bearnformer acts like a signal power inverter causing high powered
jamming signals to be attenuated relative to the low power desired signal. It
operates by minimizing the antenna output power subject to a "soft constraint".
The primary antenna element is coupled directly, and it maintains the soft

omni-directionality constraint and keeps the beamformer output power from
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being driven to zero. Attached to the auxilary elements are FIR adaptive filters.
These filters allow the flexibility of frequency filtering as well as spatial filtering
to remove unwanted jamming signals. Figure 3b shows a general purpose adap-
tive filter. The two-element Zahm beamformer is simply an adaptive filter whose
desired response and primary input are connected to the primary antenna ele-

ment and the auxilliary antenna element respectively.

3.4 IIR Adaptive Filtering

Keeping in mind the simple connection between adaptive beamforming and
adaptive filtering, we now discuss a general purpose adaptive lIR filter. The
usual form of FIR adaptive filter uses LMS algorithm to adjust its weights to
minimize the mean square error between the desired response and the filter
output. The FIR LMS adaptive filter has been used in a wide range of applications
with favorable results. There has been much research concerning the develop-
ment of a general purpose adaptive IIR filter possessing the same robust charac-

teristic as the FIR LMS algorithm.

In this section we will describe our technique for implementing an IIR adap-
tive filter. Figure 3.3 shows the basic structure of an lIR adaptive filter. We use
z-transform notation to indicate a linear filter, the converged adaptive filter.

The polynomial B{z) corresponds to the zeros or FIR part of the digital filter and

the polynomial 1 1 corresponds to the poles or IIR part of the filter.

1+274()
The fixed term 1 in the denominator polynomial alleviates the problem of divid-
ing by zero and does not influence the generality of the total structure. The
adaptive part of this filter adjusts the coeflicients of the A(z) and B(z) polyno-
mial in such a manner that the mean squared output error is minimized. This is
standardly refered to as an " output error " method since it is directly minimiz-

ing the difference between the desired response d and the filter output y.
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Figure 3.3. Basic IIR adaptive filter.
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The output error method of adaptive IIR filtering has many problems. The
mean square error is a non-quadratic function of the feedback weights. This
causes major difficulties that lie in maintaining algorithm stability, providing
relatively rapid convergence z;ates and guaranteeing optimality of the converged
filter (i.e. convergence to the global rather than to a local optimum). In the FIR

case, these problems are for the most part, nonexistent.

For example, a fixed FIR filter is always stable. Since the filter output is a
linear sum of delayed versions of its input, a bounded input must result in a
bounded output. In a fixed IIR filter this is not the case. Figure 3.4 shows a sin-
gle weight IIR filter. The output ¥ is generated by adding a delayed version of

the output to the input z;,

Yt Tyt . (3.1)

If the coefficient a, is of magnitude greater than 1, the filter output will "blow
up”. This is due to the output feedback inherent in IIR filtering making the filter
unstable. When adapting IIR filters, one must make sure the fillter weights

remain in the stable region.

Another difficulty in IIR adaptive filtering is one of slow convergence. Most
adaptive IIR filters require enormous amounts of data and consequently long
waiting times until the filter converges. This is primarily due to the nature of
the so called error surface which contains many flat areas. Because most adap-
tive algorithms are based on the method of steepest descent, flat areas on the
error surface result in slow convergence. In the usual FIR filtering problem, this
is not the case. The error surface of an FIR adaptive filter is a quadratic func-
tion of its weights and has only one minimum and usually does not possess flat

spots.

The technique we have developed for adapting IIR filters involves minimizing

an error which is somewhat different from the output error. The different
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Figure 3.4. Single weight IIR filter.
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choice of error alleviates many of the problems just discussed. Consider a refor-
mulation of the basic IIR adaptive filter shown in figure 3.3. In the path of the
error, place an FIR and an IIR fiiter in cascade having transfer functions

1+z71A(2) and respectively. This is shown in figure 3.5a. These two

filters in cascade cancel and do not meodify the overall structure. By pushing
the first fiiter through the summation node, the structure shown in figure 3.5a is
transformed into the identical structure shown in figure 3.5b. Now cancellation

of the two cascaded filters results in the structure shown in figure 3.5¢.

Notice the diflerence between the error e; and the error e;; one is a filtered
version of the other. The error e; is called output error and the error e, is
called "equation error”. This terminology comes from control systems theory.
It turns out that minimization of equation error is a much simpler task than
minimization of output error. This is because the mean square of the output
error is quadratic in the parameters of B(z), but non-quadratic function of the
parameters of A(z). Oﬁ the other hand, the mean square of equation error is a
quadratic function of the parameters of both A(z) and B(z). But is it reasonable
to minimize equation error rather than the natural output error? If the A(z) and
B(z) polynomials have enough weights to make the equation error small, then it
is likely that the output error will also be small. In fact, if the equation error is
driven to zero, then the output error will also be zero. In this case, minimizing

equation error is equivalent to minimizing output error.

A filter based on minimizing equation error is shown in figure 3.6. The

dashed lines indicate that the weights are to be copied into the output filter

1

—————— The interesting feature about this structure is that it can be
1+2714(2)

adapted using a simple FIR LMS algorithm. Consequently, it will have many of

the nice robust characteristics that the FIR LMS algorithm has. The error sur-
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face will be a quadratic function of the weights; there will be no flat spots to slow

convergence and no local minima to hinder global optimality.
One important detail has been neglected here. How can we be sure that the

output filter will be stable? The roots of the adaptive filter which is

1
1+z714(z)
filtering the desired response could lie outside the stability region. As such, this

1

would mean that ——————
1+2714(2z)

would be unstable. To overcome this problem, we

have developed a minimum-phase constrained LMS algortihm. Minimum phase

in this case means that all the roots of 1+z 'A(z) lie within the unit circle

. . . o . 1
{which is the desired stability region for T+z-14(2) } . If each update of the

1+2 '4(z) polynomial is done so that the updated polynomial is kept minimum

phase, then the output filter will remain stable.

The key to the’ new adaptive IIR filter is, in fact, the development of a
minimum phase constrained LMS algorithm. This algorithm can be described as

follows.

The minimum phése constrained LMS algorithm is a method of adapting
polynomial ceeflicients to minimize the nrean équare error subject to the con-
straint that all roots of the polynomial lie either within the unit circle or within
any circle of prescribed radius. As previously mentioned, the objective of this
algorithm is to generate an invertible polynomial to be used in an adaptive 1IR

filter structure.

An update of the constrained polynomial is accomplished in two steps. The
first step performs a conventional LMS update. The second step alters the
updated polynomial in such a way that the resulting polynomial is minimum

phase.
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Step 1. Conventional LMS update:
Ay = Aj —ﬂ'ejxj (3.)

where 4; is a vector containing the coeflicients of the A(z) polynomial and e;,X;

are defined as in figure 3.6.

Step 2. Minimum phase projéction:
First check the 1+2714(2z) polynomial for minimum phase. If already minimum
phase, this step is terminated. It A(z) is not minimum phase, then all roots of

A(z) are shrunk radially towards the origin by a "shrinkage factor”, p
Ajn(z) « AjH(P_‘z) . (3.3)

It p is chosen to be a positive number less than 1, then all of the roots of the
Aj+1(z) polynomial will be drawn radially inward. The shrinkage ratio, p, is
reduced slowly in a series of small steps until A{z) passes the minimum phase
test. This completes the adaptation cycle. When the next data vector is avail-

able, a new adapt cycle commences in the Step 1 mode.

Because the minimum phase test may need to be applied several times per
adapt cycle, it is imperative that the test be done in a way that requires very lit-
tle computation. An efficient test for minimum phase is cne based on the
lattice-form realization of FIR filters due to Itakura and Saito [17]. The polyno-
mial 1+z7'A(z) corresponds directly to a FIR transversal filter. An equivalent
FIR lattice-form filter can be constructed from knowledge of the transversal
filter weights. Both FIR filters will have the same impulse response. The polyno-
mial 142 'A(z) is minimum phase if and only if all of the weights (also known as
reflection coeflicients) of the equivalent lattice have magnitude less than one.
The beauty of this test lies in the ease with which the transversal filter is
transformed into an equivalent lattice filter. An algorithm for converting poly-

romial coeflicients into the latlice filler reflection coeflicients is described
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below. This algorithm lends itself readily to computer implementation, requir-
ing memory space and computations proportional to the square of the filter
order. A few years ago, we would not consider such an approach. Today, pro-

cedures of this type are with the realri of practicality.
The transversal filter polynomial to be lested can be represented by
1+27%4(2) = 1+a;z7'+ -+ +a,™ . (3.4)

Define an nxm matrix Q and let Q(i,j) indicate the ith row and the jth column of
this matrix. Initialize the bottom row of the Q matrix to the fliter polynomial

coeflicients

For j=1,2,...m
let Q(m.j) «a; . (3.5)

Now implement the following recursion

For i=m m-1, ---,1
For 7=1,2, ---,i-1
let QUi-1j)« Q&I Q)= Qi) (3.6)

1 — Qi)
Let k; be the ith reflection coefficient. These coeflicients can now be read off

the ith diagonal of the Q matrix

For ;=1,2,...m
Iet ky«-Q(id) . (3.7

The filter is minimum phase if and only if all of the reflection coeflicients are of
maghitude less than one.

1+27'A(z) minimum phase < k<1 fori =12 ... m . (3.8)

This concludes the procedure for testing a polynomial for minimum phase and
completes the overall description of the minimum phase constrained LMS algo-

rithm.
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The minimum phase LMS algorithm is currently being studied with the goal
of developing convergence and optimality proofs. Although the algorithm is
unproven mathematically, it has been tested extensively by computer simula-
tion and has never failed to converge and find an optimal solution. It is a very
important new development which will have applications in aciaptive control,

digital filter design, adaptive noise canceling, and adaptive antennas.

3.5 TIR Zahm Beamformer, a description

In this section, we show how to use the IIR adaptive filter to realize an IIR
Zahm beamformer. Figure 3.7 shows a 3-element IIR Zahm beamformer
configured to minimize output error. As we previously discussed, minimization
of this output error is a difficult task. Instead we choose to reconfigure the sys-
tem by a series of evolutionary steps shown in figure 3.8a-e, to minimize equa-

tion error.

First, we seperate the filters into all-zerc,and all-pole sections as shown in

figure 3.8b. Next we establish a common denominator by inserting a filter

1
(1+27'4,(2))(1+2 "1 4,(2))

directly after the summer, and compensate by plac-

ing the inverse of this filter at the input to the summer. The introduction of
these two filters has not changed the overall system, since they cancel each
other's effects. Note that if the filter 1+27!4;(2) is adapted in one place, all
other copies 4 (z) must receive the same update, which is indicated by the
dashed lines. The new configuration of figure 3.8d behaves the same as that of
figure 3.8a, since we have simply rearranged the system of figure 3.8a. A further
simplification is to treat the cascaded fllters B,(z)(1+27'4x(z)) and
By(z)(1+27'A;(2)) as single filters denoted by B, and B, respectively. The sys-
tem of figure 3.8d will be adapted using the equation error e’ rather than than

the true output error e. This eliminates the IR part of the beamformer from
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auxilliary antenna elements and is shown in figure 3.9.

The weights, which are copied into the output filter’ must not

1
1+27'A(z)’
cause this filter to become unstable. To insure stability, we update the A(z)
polynomial using the minimum phase LMS algorithm discussed in the previous

section. The other éolynomia]s are adapted with the conventional LMS algo-

rithm.

In the next section, we will show simulation results using the IIR Zahm
beamformer of figure 3.7. The F;(z) fliters are adapted by LMS and the A(z) is

adapted using minimum phase LMS.

3.6 IIR Zahm Beamformer, simulation results

In the following experiment, we compare the performance of a conventional
Zahm beamformer to an IIR Zahm beamformer. To make a valid comparison,
the number o! degrees of freedom in both beamformers must be equal.
Specifically, we will use a 4-element broadband Zahm beamtormer with linear
element placement and 4 taps per element. This corresponds to 12 degrees of
freedom. The IR Zahm beamformer will have 3 elements with the same linear
placement and four taps per element corresponding" to 11 degrees of freedom.
The missing degree of freedom arises because of the fixed 1 in the 1+z '4(z)
polynomial. Incident upon this array is a broadband jammer having a bandwidth
equal to 10% of its center frequency. The desired signal is assumed to be of low

power and, consequently has little effect on the converged beam pattern. The
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the adaptation loop, so a simple algorithm for updating FIR filters, such as LMS,
can be used. For simplicity we define the product of the two FIR filters as one
single filter, ‘ s
h
& (1+27'4;(2))(1427145(2)) = 1+2 7 4A(2). (3.9) {
. {
e : |
b) The above result is easily generalized to a larger array with a greater number of j
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ideal behavior of this form of adaptive antenna would be to completely eliminate
the jamming signal from the system output by forming a broadband null in the
direction of the jammer. Unfortunately, perfect broadband nulls could only be
obtained by implementing exact delays on all the antenna element circuits.
With such delays the signals can be recombined in such a manner that perfect
cancellation can occur. Physically, this would require an infinite range of adju-
stable delay. If two jammers were present, it would be theoretically impossible
to form two perfect broadband nulls. Good broadband nulls can be obtained in
practice using finely spaced delay line taps. As such, one can remove most of
the broadband jé.mming power. Figdre 3.10 shows the frequency reponse of the
converged beamformer in the direction of the jammer for both the conventional
Zahm array and thé IIR Zahm array. Notice the improved notching performance
of the IR beamformer. 1t is able to remove a great deal more of the jammer
power than the conventional beamformer.A Although additional simylations need
to be run, we feel that this simple example demonstrates the possible improve-

ments which could be achieved using IIR beamforming.

3.7 F\lrt.hex_' Work

What we have"seen thus far is probably just the “tip of an iceberg”. Work is
now proceeding to extend these results to an IIR version of a Frost beamformer.
The Frost beamformer does not require the assumtion of a low-power desired
signal, but does assume knowledge of the signal look-direction. Additional simu-
lations and mathematical analysis must be done to verify the expected perfor-
mance improvements under a wider range of signal, noise, and jammer condi-

ticns. Analytical expressions for optimal beam patterns are being derived.
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Figure 3.10. Comparison of frequency response in the direction of a broadband
jammer for (a) conventional Zahm beamformer and (b) IIR Zahm
beamformer. Notice the notch improvement obtained using the

1IR beamformer.
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APPENDIX A -
The matrix inversion lemma is given by xh
i (A+BCD)™ = A™' — A1 B[C'+ DA™ B) 1 DA™ (A1) |
. - |
; choosing
e
-1
8 A= aR(t) = [-1—}’(t)] (A.2)
- «x
B = DT = X(t+1) (A.3)
! cC=1. (A.9)
L gives
(aR(t) + X(t +1)XT(t+1))! = :‘—P(t)— %—P(t).x(t-b-l)
[1+ ;—X"(tﬂ)}’(t)x(t +1)]"X"(t+1)P(t):‘—-
1 (o POX(E+)XT(E+1)P())
T a [P“) a+%(t+1)P(t)x(t+1)J (A-5)
i
|
.‘T— -y — . -
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From the text, equation 2.20, the ireight ﬁpdate is given as:
H(t+1) = P(E+1)(Y) a0 (H)d(E)X(E) + d(t+1)X(E+1)) . (B.1)
. i

Substituting Eq. (1a) gives

P()X(t+1)XT(t+1)P(¢) |
a+ XT(E+1)P(t)X(t+1)’
(3 ooy (6)dE)XE) + d(E+)X(E+1))

i=1

P(t)X(t+1)X(t+1)P(t)a
a+ XT(t+1)P(2)X(t+1)

vy PEXE+DXT( +1)P(¢)
ig:l ()X - S pX(t+ D) ST DX(EFD)

- 1/2 \
= H(t)+ (a T TR ) POXE D) HaP(t)d(t+1)X(t+1) +

d(t+1)P(t)X(t +1)XT (¢ +1)P(£)X(t +1) — P(¢)X(t +1)XT(t +1)P(£)d (t +1)X(t+1)
— aP(8)X(E +1)XT(E+a)P(E) 3, aelt)d (1))
i=1

B(t+1) = i—(P(t) -

= H(t) + ;—(P(t)d(t+1)x(t+1) -

= B(t) +(— xT(tHl)/Pz(t)x(t+1)ﬁ’(t)X(t+l)(ad(t+1) ~ ol T(£)X (¢t +1)B.2)

which gives the following recursive update for #(¢)

H(t+1) = H(t) + P(t)X(t+1)(d(t +1)

1
a + XT(t+1)P(t)X(t+1)
~ET()X(t+1)) . (B.3)

i
! ,m——
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